Answer:
B - What we change
Explanation:
Dependent Variable - What we measure
Control Variable - what stays the same
Conclusion - what we conclude
<em>Hope</em><em> </em><em>this</em><em> </em><em>can</em><em> </em><em>Help</em><em>!</em>
<em>:</em><em>D</em>
The answer is A I’m not 100 percent sure tho
Answer:
Explanation:
Hello there!
In this case, according to the given information, it turns out firstly necessary for us to set the equation for the calculation of density and mass divided by volume:
Thus, we can find the mass of the unknown by subtracting the total mass of the liquid to the mass of the flask and the liquid:
So that we are now able to calculate the density in g/mL first:
Now, we proceed to the conversion to lb/in³ by using the following setup:
Regards!
Answer:
An anion that has a larger radius.
Explanation:
Answer:
The boiling point of a 8.5 m solution of Mg3(PO4)2 in water is<u> 394.91 K.</u>
Explanation:
The formula for molal boiling Point elevation is :
= elevation in boiling Point
= Boiling point constant( ebullioscopic constant)
m = molality of the solution
<em>i =</em> Van't Hoff Factor
Van't Hoff Factor = It takes into accounts,The abnormal values of Temperature change due to association and dissociation .
In solution Mg3(PO4)2 dissociates as follow :
Total ions after dissociation in solution :
= 3 ions of Mg + 2 ions of phosphate
Total ions = 5
<em>i =</em> Van't Hoff Factor = 5
m = 8.5 m
= 0.512 °C/m
Insert the values and calculate temperature change:
Boiling point of pure water = 100°C = 273.15 +100 = 373.15 K
= 373.15 K[/tex]
21.76 = T - 373.15
T = 373.15 + 21.76
T =394.91 K