Wow very difficult I am so confused
The domain of Eukarya contains eukaryotes, which are cells with nuclei.
Answer:
Explanation:
Cubic decimeter is the same unit as liter; so, mole per cubic decimeter is mole per liter, and that is the unit of concentration of molarity. Thus, what is asked is the molarity of the solution. This is how you find it.
1. <u>Take a basis</u>: 1 dm³ = 1 liter = 1,000 ml
2. <u>Calculate the mass of 1 lite</u>r (1,000 ml) of solution:
- density = mass / volume ⇒ mass = density × volume
Here, the density is given through the specific gravity
Scpecific gravity = density of acid / density of water
Take density of water as 1.00 g/ml.
- density of solution = 1.25 g/ml
- mass solution = 1.25 g/ml × 1,000 ml = 1,250 g
3. <u>Calculate the mass of solute</u> (pure acid)
- % m/m = (mass of solute / mass of solution) × 100
- 56 = mass of solute / 1,250 g × 100
- mass of solute = 56 × 1,250g / 100 = 700 g
4. <u>Calculate the number of moles of solute</u>:
- moles = mass in grams / molar mass = 700 g / 70 g/mol = 10 mol
5. <u>Calculate molarity (mol / dm³)</u>
- M = number of moles of solute / liter of solution = 10 mol / 1 liter = 10 mol/liter.
Answer:
Explanation:
Hello there!
In this case, given the solubilization of cadmium (II) hydroxide:
The solubility product can be set up as follows:
Now, since we know the concentration of cadmium (II) ions at equilibrium and the mole ratio of these ions to the hydroxide ions is 1:2, we infer that the concentration of the latter at equilibrium is 3.5x10⁻⁵ M. In such a way, the resulting Ksp turns out to be:
Regards!
Explanation:
“The isomers butane and methyl propane have the same molecular formula and different properties”, this is because structural isomers usually have different properties to their parent.