Answer:
Both reactions share a common intermediate and differ only in the leaving group
Explanation:
The elimination reaction of tertiary alkyl halides usually occur by E1 mechanism. In E1 mechanism, the substrate undergoes ionization leading to the loss of a leaving group and formation of a carbocation.
Loss of a proton from the carbocation completes the reaction mechanism yielding the desired alkene.
In the cases of t-butanol and t-butyl bromide, the mechanism is the same. The both reactions proceed by E1 mechanism. The leaving groups in each case are water and chloride ion respectively.
<em>I</em><em> </em><em>do</em><em> </em><em>not</em><em> </em><em>understand</em><em> </em><em>science</em><em> </em><em>but</em><em> </em><em>if</em><em> </em><em>u</em><em> </em><em>ask</em><em> </em><em>me</em><em> </em><em>I</em><em> </em><em>would</em><em> </em><em>have</em><em> </em><em>no</em><em> </em><em>clue</em><em> </em><em>do</em><em> </em><em>u</em><em> </em><em>get</em><em> </em><em>what</em><em> </em><em>I</em><em> </em><em>mean</em>
Answer:
1-46
2-18
Explanation:
c=12 H=1 O=16
ethanol (12×2)+(6×1)+(16)=46
water (2×1)+(16)=18
<span>the table say that at 20 degree celcius 88.0g of NANO3 will remain dissolved in
100 gm of H2O
so at 20 degree celcius 80.0g of H20 will dissolve
(88.0g)x(80g/100g)=70.4g of NANO3
so at 20 degree celcius
86.3g-70.4g= 15.9 gram of NANO3 will come out of solution.</span>
Answer: The mass of electrons is mostly ignored because electrons are extremely small compared to neutrons and protons.
Explanation: A proton is about 1,836 times the size of an electron.
On the periodic table, the atomic number for each element can be found. This number is found by measuring the weight of 6.02 x 10^23 atoms of the element in grams. Electrons aren't ignored when finding exact math, but for the sake of simplification high school teachers will generally have you only count the number of protons and neutrons when calculating the mass of atoms.