Velocity, direction, or both at the same time.
Um student a because they were there a few seconds ahead
Answer:
Explanation:
a ) starting from rest , so u = o and initial kinetic energy = 0 .
Let mass of the skier = m
Kinetic energy gained = potential energy lost
= mgh = mg l sinθ
= m x 9.8 x 70 x sin 30
= 343 m
Total kinetic energy at the base = 343 m + 0 = 343 m .
b )
In this case initial kinetic energy = 1/2 m v²
= .5 x m x 2.5²
= 3.125 m
Total kinetic energy at the base
= 3.125 m + 343 m
= 346.125 m
c ) It is not surprising as energy gained due to gravitational force by the earth is enormous . So component of energy gained due to gravitational force far exceeds the initial kinetic energy . Still in a competitive event , the fractional initial kinetic energy may be the deciding factor .
Answer:
he peaks are the natural frequencies that coincide with the excitation frequencies and in the second case they are the natural frequencies that make up the wave.
Explanation:
In a resonance experiment, the amplitude of the system is plotted as a function of the frequency, finding maximums for the values where some natural frequency of the system coincides with the excitation frequency.
In a Fourier transform spectrum, the amplitude of the frequencies present is the signal, whereby each peak corresponds to a natural frequency of the system.
From this explanation we can see that in the first case the peaks are the natural frequencies that coincide with the excitation frequencies and in the second case they are the natural frequencies that make up the wave.