Answer:
v = 1.32 10² m
Explanation:
In this case we are going to use the universal gravitation equation and Newton's second law
F = G m M / r²
F = m a
In this case the acceleration is centripetal
a = v² / r
The force is given by the gravitational force
G m M / r² = m v² / r
G M/r = v²
Let's calculate the mass of the planet
M = v² r / G
M = (1.75 10⁴)² 5.00 10⁶ / 6.67 10⁻¹¹
M = 2.30 10²¹ kg
With this die we clear the equation to find the orbit of the second satellite
v = √ G M / r
v = √ (6.67 10⁻¹¹ 2.30 10²¹ / 8.75 10⁶)
v = 1.32 10² m
Lmalemwlsnlenekenfndelenekf
Answer:
kwkwskdkmfmfmdkakksjddndkkakamsjjfjdmakisnddnianbfdnnskake
now
<span>2.5 m/s going upward.
In the situation described, Erica and Danny undergo a non-elastic collision which will conserve their combined momentum. Since Erica is stationary, her momentum is 0. And since Danny is moving upward at 4.7 m/s his momentum is 43 kg * 4.7 m/s = 202.1 kg*m/s. Assuming that both Erica and Danny will be moving as a joined system, their combined mass is 38 kg + 43 kg = 81 kg. Since the momentum will be the same, their velocity will be 202.1 kg*m/s / 81 kg = 2.495061728 m/s. Since we only have 2 significant figures in the provided data, rounding the result to 2 significant figures gives a velocity of 2.5 m/s going upward.</span>
Answer:2 amperes
Explanation:
Voltage=120v
Total resistance=15+15+30
Total resistance=60 ohms
Current=voltage ➗ resistance
Current=120 ➗ 60
Current=2 amperes