Answer:
Explanation:
The point at which magnetic field is to be found lies outside wire so while applying Ampere's law we shall take the whole of current . If B be magnetic field which is circular around conductor.
Applying Ampere's law :-
∫ B dl = μ₀ I ; I is current passing through ampere's loop
B x 2π x 2.00 = 4 x π x 10⁻⁷ x 2
B = 2 x 10⁻⁷ T.
Complete Question
For each of the following scenarios, describe the force providing the centripetal force for the motion:
a. a car making a turn
b. a child swinging around a pole
c. a person sitting on a bench facing the center of a carousel
d. a rock swinging on a string
e. the Earth orbiting the Sun.
Answer:
Considering a
The force providing the centripetal force is the frictional force on the tires \
i.e
where is the coefficient of static friction
Considering b
The force providing the centripetal force is the force experienced by the boys hand on the pole
Considering c
The force providing the centripetal force is the normal from the bench due to the boys weight
Considering d
The force providing the centripetal force is the tension on the string
Considering e
The force providing the centripetal force is the force of gravity between the earth and the sun
Explanation:
Answer:
A. The wavelength doubles but the wave speed is unchanged
Explanation:
The relationship between the period and wavelength is direct. Doubling the period of the oscillator will correspondingly double the wavelength but the wave speed is unaffected
It's important because you have to know when to make it go faster or else you might not be able to go upside down or in a circle
The gravitational force is s type of force that has the ability to attract any two objects having mass. The gravitational force will be .
<h3>What is the
gravitational force?</h3>
The gravitational force is s type of force that has the ability to attract any two objects with mass. Gravitational force tries to pull two masses towards each other.
Given,
mass of the sun ()= kg
mass of Jupiter()= kg
distance between the sun and Jupiter (r)= m
Newton
Hence the gravitational force between the sun and Jupiter will be
To learn more about gravitational force refer to the link:
brainly.com/question/24783651