Answer:
Explanation:
F = ma
<u>Assuming</u> the 20° is angle θ measured to the horizontal
mgsinθ - μmgcosθ = ma
g(sinθ - μcosθ) = a
at constant velocity, a = 0
g(sinθ - μcosθ) = 0
sinθ - μcosθ = 0
sinθ = μcosθ
μ = sinθ/cosθ
μ = tanθ
μ = tan20
μ = 0.3639702342...
μ = 0.36
Answer:
Speed will be equal to 1.40 m/sec
Explanation:
Mass of the rubber ball m = 5.24 kg = 0.00524 kg
Spring is compressed by 5.01 cm
So x = 5.01 cm = 0.0501 m
Spring constant k = 8.08 N/m
Frictional force f = 0.031 N
Distance moved by ball d = 15.8 cm = 0.158 m
Energy gained by spring
Energy lost due to friction
So remained energy to move the ball = 0.0101 - 0.0048 = 0.0052 J
This energy will be kinetic energy
v = 1.40 m/sec
Answer:
Scientists plan to release a space probe that will enter the atmosphere of a gaseous planet. The temperature of the gaseous planet increases linearly with the height of the atmosphere as measured from the top of a visible boundary layer, defined as 0 kilometers in altitude. The instruments on board can withstand a temperature of 601 K. At what altitude will the probe's instruments fail? A. 50 kilometers B. 80 kilometers C. 83 kilometers D. 100 kilometers E. 111 kilometers
Explanation:
A. 50 kilometers