Answer:
The vertex form parabola y = 2( x+4)² -37
Step-by-step explanation:
<u>Step(i):-</u>
Given parabola equation j(x) = 2x² + 8x -5
Let y = 2x² + 8x -5
⇒ y = 2(x² + 2(4x)+(4)²-(4)²) -5
By using (a + b)² = a² +2ab +b²
y = 2(x+4)²- 32 -5
y = 2 ( x-(-4))² -37
<u><em>Step(ii):-</em></u>
The vertex form parabola y = a( x-h)² +k
The vertex form parabola y = 2(x+4)² -37
The solution will be (7,-5), so the y-value is -5
D. (-8,-7) Simplifying<span>y + -8 = 4(x + 7)
Reorder the terms:
-8 + y = 4(x + 7)
Reorder the terms:
-8 + y = 4(7 + x)
-8 + y = (7 * 4 + x * 4)
-8 + y = (28 + 4x)
Solving
-8 + y = 28 + 4x
Solving for variable 'y'.
Move all terms containing y to the left, all other terms to the right.
Add '8' to each side of the equation.
-8 + 8 + y = 28 + 8 + 4x</span>