<u>Answer:</u> The correct answer is Option D.
<u>Explanation:</u>
To calculate the hybridization of , we use the equation:
where,
V = number of valence electrons present in central atom (S) = 6
N = number of monovalent atoms bonded to central atom = 0
C = charge of cation = 0
A = charge of anion = 0
Putting values in above equation, we get:
The number of electron pair around the central metal atom are 3. This means that the hybridization will be and the electronic geometry of the molecule will be trigonal planar.
Hence, the correct answer is Option D.
Explanation:
The radial distribution function gives the probability density for an electron to be found anywhere on the surface of a sphere located a distance r from the proton. Since the area of a spherical surface is 4πr2, the radial distribution function is given by 4πr2R(r)∗R(r).
I
increasing the temperature shifts the equilibrium in the direction of the reaction in which heat is absorbed.
Explanation:
The concentration of NO at equilibrium will increase when the reaction takes place at a higher temperature because increasing the temperature shifts the equilibrium in the direction of the reaction in which heat is absorbed.
The reaction is an endothermic reaction.
N₂ + O₂ + heat ⇄ 2NO
According to Le Chatelier's principle, "if any of the conditions of a system in equilibrium is changed the system will adjust itself in order to annul the effect of the change".
- In an endothermic reaction, heat is usually absorbed.
- We see that in the backward reaction, heat is absorbed.
- If the temperature of this reaction is increased, the backward reaction is favored more.
- Since the reactants are combining better, more products NO results.
learn more:
Thermodynamics of reactions brainly.com/question/10567109
#learnwithBrainly
<span>If I were a scientist examining the DNA sequence of two unknown organisms that I hypothesize share a common ancestor, I would expect to find similar or almost identical DNA sequence between the two organisms.
</span>