Answer:
Consider the following system of linear equations: 2 + 3y + 2z = 5 - 2x + y - z= -2 2x + 3z = 11 Instructions: • Solve the system by reducing its augmented matrix to reduced row echelon form (RREF). Yes, you must reduce it all the way to RREF. • Write out the matrix at each step of the procedure, and be specific as to what row operations you use in each step. • At the end of the procedure, clearly state the solution to the system outside of a matrix. • If the solution is unique, express the solution in real numbers. • If there are infinitely many solutions, express the solution in parameter(s). . If there is no solution, say so, and explain why.
All of the following are possible ranks of a 4x3 matrix EXCEPT O 1 2 3 4
How is the number of parameters in the general solution of a consistent linear system related to the rank of its coefficient matrix? Let r= number of rows in the coefficient matrix c= number of columns in the coefficient matrix p= number of parameters in the general solution R=rank of the coefficient matrix 1. R=p+r 2. R=C+p 3. R=r-p 4. R=C-p 5. R=p-r
Step-by-step explanation:
x + 3y +2z = 5
-2x + y - z = -2
2x + 3z = 11
Here,
i.e AX=B
We can write as augmented matrix
Since Rank (A|B) = Rank (A) = 3 = number of variables
<h3>⇒ systems has unique solution and </h3><h3>x = -2 , y = -1 , z = 5</h3>