Answer:
34,6g of (NH₄)₂SO₄
Explanation:
The boiling-point elevation describes the phenomenon in which the boiling point of a liquid increases with the addition of a compound. The formula is:
ΔT = kb×m
Where ΔT is Tsolution - T solvent; kb is ebullioscopic constant and m is molality of ions in solution.
For the problem:
ΔT = 109,7°C-108,3°C = 1,4°C
kb = 1.07 °C kg/mol
Solving:
m = 1,31 mol/kg
As mass of X = 600g = 0,600kg:
1,31mol/kg×0,600kg = 0,785 moles of ions. As (NH₄)₂SO₄ has three ions:
0,785 moles of ions× = 0,262 moles of (NH₄)₂SO₄
As molar mass of (NH₄)₂SO₄ is 132,14g/mol:
0,262 moles of (NH₄)₂SO₄× = <em>34,6g of (NH₄)₂SO₄</em>
<em></em>
I hope it helps!
Answer:
1.25 x 10^15Hz
Explanation:
c = frequency x wavelength
c is the speed of light, which is equal to 3.00 x 10^8 m / s
frequency = c /wavelength
= (3.00 x 10^8m /s) / (2.40 x 10^-5 cm x 1 m /100cm)
= (3.00 x 10^8 m/s) / 2.40 x 10^-7m
= 1.25 x 10^15/s 1 / s = 1Hz
So, the Frequency = 1.25 x 10^15Hz
I hope this helped :)
Answer:
Sodium Chloride has Ionic bond while Hydrogen Chloride has covalent bond.
Explanation:
Na has 11 electrons (2, 8, 1) and need to give away 1 electron to be stable
Cl has 17 electrons ( 2, 8, 7) and needs 1 electron to be stable.
Na transfers 1 electron to CL to form Ionic bond.
While
Hydrogen has 1 electron and shares with Chlorine to be stable.
Covalent bond involves sharing.
a. volume of NO : 41.785 L
b. mass of H2O : 18 g
c. volume of O2 : 9.52 L
<h3>Further explanation</h3>
Given
Reaction
4 NH₃ (g) + 5 O2 (g) → 4 NO (g) + 6 H2O (l)
Required
a. volume of NO
b. mass of H2O
c. volume of O2
Solution
Assume reactants at STP(0 C, 1 atm)
Products at 1000 C (1273 K)and 1 atm
a. mol ratio NO : O2 from equation : 4 : 5, so mo NO :
volume NO at 1273 K and 1 atm
b. 15 L NH3 at STP ( 1mol = 22.4 L)
mol ratio NH3 : H2O from equation : 4 : 6, so mol H2O :
mass H2O(MW = 18 g/mol) :
c. mol NO at 1273 K and 1 atm :
mol ratio of NO : O2 = 4 : 5, so mol O2 :
Volume O2 at STP :