Answer:
7.28×10⁻⁵ T
Explanation:
Applying,
F = BILsin∅............. Equation 1
Where F = magnetic force, B = earth's magnetic field, I = current flowing through the wire, L = Length of the wire, ∅ = angle between the field and the wire.
make B the subject of the equation
B = F/ILsin∅.................. Equation 2
From the question,
Given: F = 0.16 N, I = 68 A, L = 34 m, ∅ = 72°
Substitute these values into equation 2
B = 0.16/(68×34×sin72°)
B = 0.16/(68×34×0.95)
B = 0.16/2196.4
B = 7.28×10⁻⁵ T
A billiard ball collides with a stationary identical billiard ball to make it move. If the collision is perfectly elastic, the first ball comes to rest after collision.
<h3>Why does the first ball comes to rest after collision ?</h3>
Let m be the mass of the two identical balls.
u1 = velocity before the collision of ball 1
u2 = 0 = velocity of second ball that is at rest
v1 and v2 are the velocities of the balls after the collision.
From the conservation of momentum,
∴ mu1 + mu2 = mv1 + mv2
∴ mu1 = mv1 + mv2
∴ u1 = v1 + v2
In an elastic collision, the kinetic energy of the system before and after collision remains same.
∴
∴
∴ ₁₂ = 0
- It is impossible for the mass to be zero.
- Because the second ball moves, velocity v2 cannot be zero.
- As a result, the velocity of the first ball, v1, is zero, indicating that it comes to rest after collision.
<h3>What is collision ?</h3>
An elastic collision is a collision between two bodies in which the total kinetic energy of the two bodies remains constant. There is no net transfer of kinetic energy into other forms such as heat, noise, or potential energy in an ideal, fully elastic collision.
Can learn more about elastic collision from brainly.com/question/12644900
#SPJ4
In Physics, 'work' has a very clear definition:
It's (strength of a force) times (distance through which the force acts).
'Work' has the units of Energy.
If you push against a shopping cart with 30 newtons of force, and
you keep pushing while the cart moves 4 meters, then you have
done (30 x 4) = 120 newton-meters of work = 120 "Joules".
Answer:
W = 145.8 [N]
Explanation:
To solve this problem we must remember that weight is defined as the product of mass by gravity, in this case lunar gravity.
W = m*g
where:
m = mass = 90 [kg]
g = gravity acceleration = 1.62 [kg/m²]
W = 90*1.62
W = 145.8 [N]