672 is the answer to this question
Two eventis are independent if knowledge about the first doesn't change your expectation about the second.
a) Independent: After you know that the first die showed 4, you stille expect all 6 numbers from the second. So, the fact that the first die showed 4 doesn't change your expectation about the second die: it can still show numbers from 1 to 6 with probability 1/6 each.
b) Independent: It's just the same as before. After you know that the first coin landed on heads, you still expect the second coin to land on heads or tails with probability 1/2 each. Knowledge about the first coin changed nothing about your expectation about the second coin.
a) Dependent: In this case, there is a cause-effect relation, so the events are dependent: knowing that a person is short-sighted makes you almost sure that he/she will wear glasses. So, knowledge about being short sighted changed your expectation about wearing glasses.
1.) (-3,-2)
2.) 8.4m^3
3.) 37.7m^3
128 = a + + 4(a + 10) + (a + 10)
128 = a + 4a + 40 + a + 10
128 = 6a + 50
128-50 = 6a
78 = 6a
13 = a
1st = a = 13
2nd = 4(a + 10) = 4(23) = 92
3rd = a + 10 = 23
Answer: 19.63
Step-by-step explanation:
A = pir^2 , pi*2.5^2 = 19.63