<h3>
Part 1.</h3>
-7(b + 16) = 7(b - 4)
Solution:
-7(b + 16) = 7(b - 4)
= -7b - 112 = 7b - 28
= -112 + 28 = 7b + 7b
= -84 = 14b
= b = -84/14
= b = -6
<u>Rechecking:</u>
-7(b + 16) = 7(b - 4)
= -7(-6 + 16) = 7(-6 - 4)
= -70 = -70
<em>Hence b = -6</em>
Part 2.
9 - z = 3z+ 39
Solution:
9 - z = 3z + 39
= 3z + z = 39 - 9
= 4z = 30
= z = 30/4= 7.5
= z = 7.5
Rechecking:
9-z = 3z+39
9-(-7.5) = 3(-7.5)+39
9+7.5 = -22.5+39
16.5 = 16.5
<em>Hence z = 7.5</em>
<h3>Part 3.</h3>
12c - 5c = 4c + 15
Solution:
12c - 5c = 4c + 15
= 7c - 4c = 15
= 3c = 15
= c = 15/3
= c = 5
<u>Rechecking:</u>
12c - 5c = 4c + 15
= 12(5)-5(5 )= 4(5)+15
= 60-25 = 20+15
= 35 = 35
<em>Hence proved c = 5</em>
<h3>
Part 4.</h3>
40 - 5s = -2 (-1 + 3s)
Solution:
40 - 5s = -2 (-1 + 3s)
= 40 - 5s = 2 - 6s
= 6s - 5s = 2 - 40
= s = -38
Rechecking:
40 - 5s = -2 (-1 + 3s)
40 - 5(-38)=-2(-1 + 3(-38))
= 40 + 190 = -2(-1-114)
= 230 = -2(-115)
= 230 = 230
<em>Hence proved s = -38</em>
<h3>
Part 5.</h3>
2.8w + 5.3 = 3.3w - 0.7
Solution:
2.8w + 5.3 = 3.3w - 0.7
= 2.8w - 3.3w = -0.7 - 5.3
= -0.5w = - 6.0
= w = -6.0/-0.5
= w = 12
<u>Rechecking:</u>
2.8w + 5.3 = 3.3w - 0.7
= 2.8(12) + 5.3 = 3.3(12) - 0.7
= 33.6 + 5.3 = 39.6 - 0.7
= 38.9 = 38.9
<em>Hence proved w = 12</em>
<h3>Part 6.</h3>
4(m+9) = 3(8-m)
Solution:
= 4m + 36 = 24 - 3m
= 36 - 24 = -3m - 4m
= 12 = -7m
= m = 12/-7 = 1.714...
As the m is equal to -12/7 which is equal to a fraction value.
So we will take m = -12/7
<u>Rechecking:</u>
4(m+9) = 3(8-m)
= 4(-12/7+9) = 3(8-(-12/7))
= 4(-12+7(9))/7 = 3(8+12/7)
= 4(-12+63)/7 = 3(7(8)+12)/7
= 4(51)/7 = 3(56+12)/7
= 204/7 = 3(68)/7
= 204/7 = 204/7
<em>Hence proved m = -12/7</em>
<h3>
Part 7.</h3>
(1/8)k + 32 = (1/2)k - 1
Solution:
(1/8)k + 32 = (1/2)k - 1
= 1k/8 + 32 = 1k/2 - 1
= (1/8)k - (1/2)k = -1 - 32
= ((1 - 4)/8)k = -33
= (-3/8)k=-33
= k = -33 * -8/3
= k = 88
<u>Rechecking:</u>
(1/8)k + 32 = (1/2)k - 1
= (1/8)(88)+32=(1/2)(88)-1
= (1)(88)/8+32=(1)(88)/2-1
= 88/8+32=88/2-1
= 11+32=44-1
= 43=43
<em>Hence proved k = 88</em>
Part 8.
(3/4)x - x= -(1/4) (2x + 10)
Solution:
(3/4)x - x= -(1/4) (2x + 10)
= (3/4)x - x= -1/2x - 2.5
= (3/4)x - x + (1/2)x = -2.5
= (3/4 - 1 + 1/2)x = -2.5
= -0.25 x = -2.5
= x = -2.5/0.25
= x = 10
<u>Rechecking:</u>
(3/4)x - x= -(1/4) (2x + 10)
(3/4)(-10)-(-10)=-(1/4)(2(-10)+10)
= -30/4 + 10 = -(1/4)(-20+10)
= -7.5 + 10 = -(1/4)(-10)
= 2.5 = 10/4
= 2.5 = 2.5
<em>Hence proved x = 10</em>
<h3>Part 9.</h3>
9(t+1) = 5(t-4) - 1
Solution:
9(t+1) = 5(t-4) - 1
= 9t +9 = 5t - 20 - 1
= 9t - 5t = -20 - 1 - 9
= 4t = -30
= t = -30/4
= t = -7.5
<u>Rechecking the solution:</u>
9(t+1) = 5(t-4) - 1
= 9(-7.5+1 ) = 5(-7.5-4) - 1
= 9(-6.5)=5(-11.5)-1
= -58.5 = -57.5 - 1
= -58.5 = -58.5
Hence proved t = -7.5
<h3>
Part 10.</h3>
3d + 1.1 = 2.3 - d
Solution:
3d + 1.1 = 2.3 - d
= 3d + d = 2.3 - 1.1
= 4d = 1.2
= d = 1.2/4
= d = 0.3
<u>Rechecking the answer:</u>
3d + 1.1 = 2.3 - d
= 3(0.3) + 1.1=2.3 - 0.3
= 0.9 + 1.1 = 2.0
= 2.0 = 2.0
<em>Hence proved d = 0.3</em>
<h3>Part 11.</h3>
-7(a+2) + 15= 1 - 7a
Solution:
-7(a+2) + 15= 1 - 7a
= -7a -14 + 15 = 1 - 7a
= -7a + 7a = 1 + 14 - 15
= 0 = 15 - 15
= 0 = 0
<u>Here the value of a is an infinite solution. As the value of a is infinite so there is no solution of a.</u>
<h3>Part 12.</h3>
6(3n - 1) = 2(9n + 4)
Solution:
6(3n - 1) = 2(9n + 4)
= 18n - 6 = 18n + 8
= 18n - 18n = 8 + 16
= 0 = 16 ( wrong equation)
<u>The solution came is 0 = 16 which is not possible. 0 and 16 are not equal. Hence the given equation is not correct equation.</u>
There is something wrong in equation.