Answer: he shot tiny alpha particles throug a piece of gold foil.
Explanation:
Balance Chemical Equation for this reaction is,
2 CH₄ + O₂ → 2CH₃OH
According to this eq, 22.4 L (1 moles) of Oxygen requires 44.8 L (2 mole) CH₄ for complete reaction.
So, the volume of CH₄ required to consume 0.66 L of O₂ is calculated as,
22.4 L O₂ required to consume = 44.8 L CH₄
0.660 L O₂ will require = X L of CH₄
Solving for X,
X = (44.8 L × 0.660 L) ÷ 22.4 L
X = 1.320 L of CH₄
Result:
1.320 L of CH₄ <span>gas is needed to react completely with 0.660 L of O</span>₂<span> gas to form methanol (CH</span>₃OH<span>).</span>
Answer:
it's the chloroplast but I'm not sure which on is it it might be the F.
I believe the correct answer from the choices listed above is option A. Fan blades would be an analogy for electron cloud model. Austrian physicist Erwin Schrödinger (1887-1961) developed an “Electron Cloud Model<span>” in 1926. It consisted of a dense nucleus surrounded by a cloud of electrons. Hope this helps.</span>
Answer:
1) 0,081 ft/s
2) 0,746 lb/s
Explanation:
The relation between flow and velocity of a fluid is given by:
Q=Av
where:
- Q, flow [ft3/s]
- A, cross section of the pipe [ft2]
- v, velocity of the fluid [ft/s]
1)
To convert our data to appropiate units, we use the following convertion factors:
1 ft=12 inches
1 ft3=7,48 gallons
1 minute=60 seconds
So,
As the pipe has a circular section, we use A=πd^2/4:
Finally:
Q=vA......................v=Q/A
2)
The following formula is used to calculate the specific gravity of a material:
SG = ρ / ρW
where:
- ρ = density of the material [lb/ft3]
- ρW = density of water [lb/ft3] = 62.4 lbs/ft3
then:
ρ = SG*ρW = 1,49* 62,4 lb/ft3 = 93 lb/ft3
To calculate the mass flow, we just use the density of the chloroform in lb/ft3 to relate mass and volume: