<span>
<u><em>Answer:</em></u>sin (C)
<u><em>Explanation:</em></u><u>In a right-angled triangle, special trig functions can be applied. These functions are as follows:</u>
sin (theta) = </span>
<span>
cos (theta) = </span>
<span>
tan (theta) = </span>
<span>
<u>Now, let's check the triangle we have:</u>
<u>We have two options:</u>
<u>First option:</u>5 is the hypotenuse of the triangle
4 is the side adjacent to angle B
Therefore, we can apply the <u>cos function</u>:
cos (B) = </span>
<span>
<u>Second option:</u>5 is the hypotenuse of the triangle
4 is the side opposite to angle C
Therefore, we can apply the <u>sin function</u>:
sin (C) = </span>
<span>
Among the two options, the second one is the one found in the choices. Therefore, it will be the correct one.
Hope this helps :)
</span>
Answer:
1/9
Step-by-step explanation:
Given :
A right angle triangle ABC .
To Find :
The perimeter of ABC .
Solution :
Since, triangle ABC is right angled and angle ∠ABC is 46° .
So, AC = AB cos 46° = 7.64 units.
Also, CB = AB sin 46° = 7.91 units.
Therefore, the perimeter of ΔABC is :
P = 11 + 7.64 + 7.91 units
P = 26.55 units
Hence, this is the required solution.
T. T tt T. T t. T t. T. T. T. T ttt t t. T. T. Tt. Got. T. T. Tt. Try. T. T tt. Tt. T. T. T. T. T. T. Tt. T. T. T. T. T. T t. Tt. T. T. T. T. Tt. T. T. T. T. T. T t. T. T. T. T. T. T t. Tt. T. T t. T. T. T. T. T. T. T. T. T t