What happens when you leave it in differnt soda pops.
This question is not complete.
The complete question is as follows:
One problem for humans living in outer space is that they are apparently weightless. One way around this problem is to design a space station that spins about its center at a constant rate. This creates “artificial gravity” at the outside rim of the station. (a) If the diameter of the space station is 800 m, how many revolutions per minute are needed for the “artificial gravity” acceleration to be 9.80m/s2?
Explanation:
a. Using the expression;
T = 2π√R/g
where R = radius of the space = diameter/2
R = 800/2 = 400m
g= acceleration due to gravity = 9.8m/s^2
1/T = number of revolutions per second
T = 2π√R/g
T = 2 x 3.14 x √400/9.8
T = 6.28 x 6.39 = 40.13
1/T = 1/40.13 = 0.025 x 60 = 1.5 revolution/minute
Answer: 71.7 KJ
Explanation:
The rotational kinetic energy of a rotating body can be written as follows:
Krot = ½ I ω2
Now, any point on the rim of the flywheel, is acted by a centripetal force, according to Newton’s 2nd Law, as follows:
Fc = m. ac
It can be showed that the centripetal acceleration, is related with the angular velocity and the radius, as follows:
ac = ω2 r
We know that this acceleration has a limit value, so , we can take this limit to obtain a maximum value for the angular velocity also.
As the flywheel is a solid disk, the rotational inertia I is just ½ m r2.
Replacing in the expression for the Krot, we have:
Krot= ½ (1/2 mr2.ac/r) = ¼ mr ac = ¼ 67.0 Kg. 1.22 m . 3,510 m/s2 = 71. 7 KJ
Answer:
top speed = 17.25
Total height = 281.19 m
Explanation:
given data
mass = 75 kg
thrust = 160 N
coefficient of kinetic friction = 0.1
solution
we get here frictional force acting that is
frictional force = .............1
frictional force = 0.1 × 75 × 9.8
frictional force = 73.5 N
and
Net force acting will be F = 160 - 73.5 N
F = 86.5 N
so
Acceleration in the First 15 second will be
F = ma .........2
86.5 = 75 × a
a = 1.15 m/s²
and
now After 15 second the velocity will be as
v = u + at ..........3
here u is 0
so v will be
V = 1.15 × 15
v = 17.25
and
now we get travels distance S in 15 s
s = u × t + 0.5 × a × t²
here u is 0
so distance s will be
s = 0.5 × a × t²
s = 0.5 × 1.15 × 15²
s = 129.37 m
and
now acceleration acting is
F =
m a =
a =
a = - 0.98
here it is negative it mean downward nature of acceleration
and
now we get distance s by this formula
V² - u² = 2 a s
here v velocity is 0 and
u initial velocity is 17.25 m/s
put here value
0 - 17.25² = 2 × (-0.98) × s
solve it we get
s = 151.82 m
so
Total height is
Total height = 129.37 m + 151.82 m
Total height = 281.19 m