Answer:
Following are the answer to this question:
Explanation:
In option (a):
- The principle of Snells informs us that as light travels from the less dense medium to a denser layer, like water to air or a thinner layer of the air to the thicker ones, it bent to usual — an abstract feature that would be on the surface of all objects. Mostly, on the contrary, glow shifts from a denser with a less dense medium. This angle between both the usual and the light conditions rays is referred to as the refractive angle.
- Throughout in scenario, the light from its stars in the upper orbit, the surface area of both the Earth tends to increase because as light flows from the outer atmosphere towards the Earth, it defined above, to a lesser angle.
In option (b):
- Rays of light, that go directly down wouldn't bend, whilst also sun source which joins the upper orbit was reflected light from either a thicker distance and flex to the usual, following roughly the direction of the curve of the earth.
- Throughout the zenith specific position earlier in this thread, astronomical bodies appear throughout the right position while those close to a horizon seem to have been brightest than any of those close to the sky, and please find the attachment of the diagram.
Answer:
Mechanical advantage = 2.875
Explanation:
Given:
A diagram is shown below for the above scenario.
Length of ramp (Effort arm) = 4.6 m
Height of truck bed ( Resistance length) = 1.6 m
Mechanical advantage (MA) is the ratio of effort arm and resistance length.
So, mechanical advantage is given as,
Answer:
kinetic energy
Explanation:
a certain amount of energy is transferred by the kick. The ball gains an equal amount of energy, mostly in the form of kinetic energy.
Answer:
when a element of 1 group take part in reaction, its atom looses outer electron and form positively charged ions called Cation.
Explanation:
Answer:
Explanation:
The electrostatic potential energy is given by the following formula
Now, we will apply this formula to both cases:
So, the change in the potential energy is