Answer:
Same direction: t=234s; d=6.175Km
Opposite direction: t=27.53s; d=0.73Km
Explanation:
If the automobile and the train are traveling in the same direction, then the automobile speed relative to the train will be (<em>the train must see the car advancing at a lower speed</em>), where is the speed of the automobile and the speed of the train.
So we have .
So the train (<em>anyone in fact</em>) will watch the automobile trying to cover the lenght of the train L at that relative speed. The time required to do this will be:
And in that time the car would have traveled (<em>relative to the ground</em>):
If they are traveling in opposite directions, <u>we have to do all the same</u> but using (<em>the train must see the car advancing at a faster speed</em>), so repeating the process:
You have selected the correct answer and blobbed over it with your pencil.
I assume you must have looked at Saturn's average distance, found 1427,
divided that number by 6, got 237 and change, then looked at the others,
and found that 228 was the only one that's anywhere close.
Answer:
Gravitational field strength is the force experienced by a unit mass. Gravitational force is the amount of force acting on a body. It is the product of field strength times the mass under consideration. Gravitational pull is just a more colloquial name for gravitational force.
Explanation:
hope it helps u
<u>Answer:</u>
<h3>During wet and freezing temperatures, ice is able to form at a faster pace on bridges because freezing winds blow from above and below and both sides of the bridge, causing heat to quickly escape. The road freezes slower because it is merely losing heat through its surface.</h3>
<u>Sources:</u>
-- https://intblog.onspot.com/en-us/why-do-bridges-become-icy-before-roads
and
-- https://www.accuweather.com/en/accuweather-ready/why-bridges-freeze-before-roads/687262
I hope this helps you! ^^