Answer:
When work is being done, the practie of labor is being performed. When work isn't being completed, this is a sign of procrastination.
Explanation:
In the answer.
Answer:
Explanation:
A grounded wire is sometimes strung along the tops of the towers to provide lightning protection.
In areas where the neutral is grounded or earthed, it is essential to endure that the neutral and the live or hot wires are not confused for each other.
When this happens, the fuses on the transformer will not operate unless the fault is very close to the transformer. The fuses in the consumer's intake box, will not operate.
Answer:
β = 114 db
Explanation:
The intensity of sound in decibles is
β = 10 log
in most cases Io is the hearing threshold 1 10-12 W / cm²
let's calculate the intensity of each instrument
I / I₀ = 10 (β / 10)
I = I₀ 10 (β / 10)
trumpet
I1 = 1 10⁻¹² 10 (94/10)
I1 = 2.51 10⁻³ / cm²
Thrombus
I2 = 1 10⁻¹² 10 (107/10)
I2 = 5.01 10-2 W / cm²
low
I3 =1 1-12 (113/10) W/cm²
I3 = 1,995 10-1 W / cm²
when we place the three instruments together their sounds reinforce
I_total = I₁ + I₂ + I₃
I_ttoal = 2.51 10-3 + 5.01 10-2 + 1.995 10-1
I_total = 0.00251 + 0.0501 + 0.1995
I_total = 0.25211 W / cm²
let's bring this amount to the SI system
β = 10 log (0.25211 / 1 10⁻¹²)
β = 114 db
Given Information:
Initial speed = u = 3.21 yards/s
Acceleration = α = 1.71 yards/s²
Final speed = v = 7.54 yards/s
Required Information:
Distance = s = ?
Answer:
Distance = s = 13.61
Explanation:
We are given the speeds and acceleration of the runner and we want to find out how much distance he covered before being tackled.
We know from the equations of motion,
v² = u² + 2αs
Where u is the initial speed of the runner, v is the final speed of the runner, α is the acceleration of the runner and s is the distance traveled by the runner.
Re-arranging the above equation for distance yields,
2αs = v² - u²
s = (v² - u²)/2α
s = (7.54² - 3.21²)/2×1.71
s = 46.55/3.42
s = 13.61 yards
Therefore, the runner traveled a distance of 13.61 yards before being tackled.
The current intensity is defined as the amount of charge flowing through a certain point of a wire divided by the time interval:
where Q is the charge and
is the time. Re-arranging the formula, we have
for the compressor in our problem, the intensity of current is I=66.1 A, while the time is
, so the amount of charge that crosses a certain point of the circuit during this time is