The velocity of the cannonball is 150 m/s, the right option is B. 150 m/s.
The question can be solved, using Newton's second law of motion.
Note: Momentum of the cannon = momentum of the cannonball.
<h3>
Formula:</h3>
- MV = mv................. Equation 1
<h3>Where:</h3>
- M = mass of the cannon
- m = mass of the cannonball
- V = velocity of the cannon
- v = velocity of the cannonball
Make v the subject of the equation.
- v = MV/m................ Equation 2
From the question,
<h3>Given: </h3>
- M = 500 kg
- V = 3 m/s
- m = 10 kg.
Substitute these values into equation 2.
- v = (500×3)/10
- v = 150 m/s.
Hence, The velocity of the cannonball is 150 m/s, the right option is B. 150 m/s.
Learn more about Newton's second law here: brainly.com/question/25545050
I believe an Atom is a very powerful source, the basic unit of a chemical element. An atom is a source of nuclear energy.
But a molecule on the other hand isn't so different.
a group of atoms bonded together, representing the smallest fundamental unit of a chemical compound that can take part in a chemical reaction.
I hope that helps, have a fantastic day!
B strength training I think that’s the answer
From conservation of energy, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately
The given weight of Elliot is 600 N
From conservation of energy, the total mechanical energy of Elliot must have been converted to elastic potential energy. Then, the elastic potential energy from the spring was later converted to maximum potential energy P.E of Elliot.
P.E = mgh
where mg = Weight = 600
To find the height Elliot will reach, substitute all necessary parameters into the equation above.
250 = 600h
Make h the subject of the formula
h = 250/600
h = 0.4167 meters
Therefore, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately
Learn more about energy here: brainly.com/question/24116470