This is a missing part of your question:
The equilibrium system between sulfur dioxide gas, oxygen gas, and sulfur trioxide gas is given.
So you need the equilibrium balanced equation of SO2, O2, SO3 reaction:
First, we will start with the original equation which is not balanced yet (to understand how we get it):
SO2 + O2 ↔ SO3
Here the number of O atom is not equal at the to sides
So we will start to balance our equation by make the number of O atom equal each other on both sides:
So we will start to put 2SO3 instead of SO3
and put 2SO2 instead of SO2 to balance also the S atom on both sides
So we will get this:
2SO2(g) + O2(g) ↔ 2SO3(g) (This is our equilibrium balanced equation)
know we have a number of O atom equals on each side = 6
and the sulfur equals on each side = 2
[ H+]=10-pH
it become
[H+]=0.1
The liters in 3.25 g of ammonia 4.28 L
<u><em>calculation</em></u>
Step 1: find moles of ammonia
moles = mass÷ molar mass
From periodic table the molar mass of ammonia (NH₃) = 14 +(1×3 ) = 17 g/mol
3.25 g÷ 17 g/mol = 0.191 moles
Step 2: find the number of liters of ammonia
that is at STP 1 moles = 22.4 L
0.191 moles = ? L
<em>by cross multiplication</em>
={( 0.191 moles ×22.4 L) / 1 mole} = 4.28 L
Pressure is directly proportional to temperature.
<span>From the ideal gas law- </span>PV= nRT
by making P the subject of the formula, P= nRT/V
<span>This implies that Pressure is directly proportional to temperature, OR, as pressure increases, temperature will increase proportionally.</span>