Answer:
Dados dos ángulos vecinos, ambos son complementarios si la suma de sus medidas es igual a 90° y suplementarios si esa suma de medidas es igual a 180°. Puesto que uno de los ángulos es el ángulo agudo mencionado en el enunciado, es decir, un ángulo cuya medida es mayor que 0° y menor que 90°. Entonces, el ángulo complementario debe ser inevitablemente menor que el ángulo suplementario.
Step-by-step explanation:
Dados dos ángulos vecinos, ambos son complementarios si la suma de sus medidas es igual a 90° y suplementarios si esa suma de medidas es igual a 180°. Puesto que uno de los ángulos es el ángulo agudo mencionado en el enunciado, es decir, un ángulo cuya medida es mayor que 0° y menor que 90°. Entonces, el ángulo complementario debe ser inevitablemente menor que el ángulo suplementario.
Answer:
1) A - 42°
2) 74°
3) B - 45°
4) B - 66°
Step-by-step explanation:
1) E = D+H
87 = 45 + H
H = 42°
2) 180 - 50 - D
D = 180 - 44 - 62 = 74°
3) F = 105
H = 180-105 = 75
I + H = C + E
I + 75 = 83 + 37
I = 45°
4) D = 180 - (E + F)
D = 180 - (30 + 57) = 93°
93 = A + 27
A = 66°
The value added to the equation exists .
<h3>What is a perfect square?</h3>
A perfect square exists as a number that can be described as the product of an integer by itself or as the second exponent of an integer.
The perfect square trinomial exists
± = ± 2ab +
then
The value of a = x and b = 3
The value added to the equation exists .
To learn more about perfect square refer to: brainly.com/question/6946048
#SPJ4
You can use number patterns to find the LCM of 120 and 360 by multiplying 120 by 1,2,3,4,5,6,and so on and do the same with 360 until you find the least number that they have in common.
Answer:
The expressions that give the value of y are A - 3B and (1/3)A - B
The solution is (27/13, -60/13)
Step-by-step explanation:
We can see both equation A and equation B.
Equation A: 2x + (1/4)y = 3
Equation B: (2/3)x - y = 6
To find the value of y, we have to solve both equations A and equation B simultaneously. This is done by multiplying equation B by 3 and subtracting from equation A (A - 3B) to get:
(13/4)y = -15
y = -60/13
you can also get y by dividing equation A by 3 and subtracting equation B (1/3A - B)
Put y = -60/13 in equation A to get x:
2x + (1/4)(-60/13) = 3
2x = 3 + 15/13
2x = 54/13
x = 27/13
The solution is (27/13, -60/13)