Answer:
If the volume is doubled and the number of molecules is doubled, pressure is unchanged
Explanation:
Step 1: Data given
Temperature = constant
Volume will be doubled
Number of molecules will be doubles
Step 2:
p*V = n*R*T
⇒ gas constant and temperature are constant
Initial pressure = n*R*T / V
Initial pressure = 2*R*T/2
Initial pressure = RT
Final pressure = 4*RT / 4
Final pressure = R*T
If the volume is doubled and the number of molecules is doubled, pressure is unchanged
Answer:
Molecular geometry Vsepr
According to VSEPR, the valence electron pairs surrounding an atom mutually repel each other; they adopt an arrangement that minimizes this repulsion, thus determining the molecular geometry. This means that the bonding (and non-bonding) electrons will repel each other as far away as geometrically possible.
Explanation:
This is an application of Boyle's law:
P₁V₁ = P₂V₂. we don't have to convert volume and pressure to standard forms. we can even use the pressure with mmHg
1 atm = 760 mmHg
V₂ = P₁V₁ / P₂ = 745 x 500 / 760 = 490 ml
Note that here we assume constant temperature
Cycloalkanes are those saturated organic compounds which exist in the form of Rings. Their Hydrogen Deficiency Index in one. The General formula for cycloalkanes is,
CnH2n
When number of Carbons = 8
Then
C₈H₂₍₈₎
C₈H₁₆
Result:
Cycloalkane containing 8 carbon atoms has
16 hydrogen atoms.