Answer:
is the no. of electrons
Explanation:
Given:
- quantity of charge transferred,
<u>No. of electrons in the given amount of charge:</u>
As we have charge on one electron
so,
is the no. of electrons
- Now if each water molecules donates one electron:
Then we require molecules.
<u>Now the no. of moles in this many molecules:</u>
where
Avogadro No.
- We have molecular mass of water as M=18 g/mol.
<u>So, the mass of water in the obtained moles:</u>
where:
m = mass in gram
Given:
Inductance, L = 150 mH
Capacitance, C = 5.00 mF
= 240 V
frequency, f = 50Hz
= 100 mA
Solution:
To calculate the parameters of the given circuit series RLC circuit:
angular frequency, =
a). Inductive reactance, is given by:
b). The capacitive reactance, is given by:
c). Impedance, Z =
d). Resistance, R is given by:
e). Phase angle between current and the generator voltage is given by:
Answer:
Orbital speed=8102.39m/s
Time period=2935.98seconds
Explanation:
For the satellite to be in a stable orbit at a height, h, its centripetal acceleration V2R+h must equal the acceleration due to gravity at that distance from the center of the earth g(R2(R+h)2)
V2R+h=g(R2(R+h)2)
V=√g(R2R+h)
V= sqrt(9.8 × (6371000)^2/(6371000+360000)
V= sqrt(9.8× (4.059×10^13/6731000)
V=sqrt(65648789.18)
V= 8102.39m/s
Time period ,T= sqrt(4× pi×R^3)/(G× Mcentral)
T= sqrt(4×3.142×(6.47×10^6)^3/(6.673×10^-11)×(5.98×10^24)
T=sqrt(3.40×10^21)/ (3.99×10^14)
T= sqrt(0.862×10^7)
T= 2935.98seconds
Explanation:
Given that,
The box of oranges cannot exceed a mass of 10.222 Kg if we are sending to a friend by mail.
The mass of each orange is 198 g
We know that,
1 kg = 1000 g
10.222 kg = 10.222×1000 g
Let there are n number of oranges. So,
It means she can send 52 oranges and it is maximum quantity.
Answer:
a) 5.63 atm
Explanation:
We can use combined gas law
<em>The combined gas law</em> combines the three gas laws:
- Boyle's Law, (P₁V₁ =P₂V₂)
- Charles' Law (V₁/T₁ =V₂/T₂)
- Gay-Lussac's Law. (P₁/T₁ =P₂/T₂)
It states that the ratio of the product of pressure and volume and the absolute temperature of a gas is equal to a constant.
P₁V₁/T₁ =P₂V₂/T₂
where P = Pressure, T = Absolute temperature, V = Volume occupied
The volume of the system remains constant,
So, P₁/T₁ =P₂/T₂
a)