Answer:
Mass = 153.48 g
Explanation:
Given data:
Volume of solution = 2.50 L
Molarity = 0.48 M
Mass required = ?
Solution:
Molarity = number of moles / volume in litter
Number of moles = Molarity × volume in litter
Number of moles = 0.48 M × 2.50 L
Number of moles = 1.2 mol
Mass of HI:
Number of moles = mass/molar mass
Mass = Number of moles × molar mass
Mass = 1.2 mol × 127.9 g/mol
Mass = 153.48 g
Answer:
Explanation:
[ so₃] = 4.37 x 10⁻²
[so₂] = 4.77 x 10⁻²
[ o₂] = 4.55 x 10⁻²
Qc = (4.37)²x10⁻⁴ /(4.77)².(4.55) x 10⁻⁶ =18.44
Qc is less than Kc hence in order to reach equilibrium more of so₃ will be produced . Statement 1 is true.
Kc is always constant . Statement 2 is false.
Statement 3 is false because statement 1 is true.
Qc Is smaller than Kc . So statement 4 is false.
The reaction is not in equilibrium. Statement 5 is false.
Answer:
A 2.8 liters
Explanation:
Step 1: Write the balanced equation
N₂ + 3 H₂ ⇄ 2 NH₃
Step 2: Establish the appropriate volume ratio
At the same temperature and pressure, the volume ratio of H₂ to NH₃ is 3:2.
Step 3: Calculate the volume of ammonia produced from 4.2 L of hydrogen
4.2 L H₂ × 2 L NH₃/3 L H₂ = 2.8 L
Answer:
c
Explanation:
it becomes positively charged