Answer:
D) the carbon with the low-energy phosphate on it in 1,3 BPG is labeled.
Explanation:
Glycolysis has 2 phase (1) preparatory phase (2) pay-off phase.
<u>(1) Preparatory phase</u>
During preparatory phase glucose is converted into fructose-1,6-bisphosphate. Till this time the carbon numbering remains the same i.e. if we will label carbon at 6th position of glucose, its position will remian the same in fructose-1,6-bisphosphate that means the labeled carbon will still remain at 6th position.
When fructose-1,6-bisphosphate is further catalyzed with the help of enzyme aldolase it is cleaved into two 3 carbon intermediates which are glyceraldehyde 3-phosphate (GAP) and dihyroxyacetone phosphate (DHAP). In this conversion, the first three carbons of fructose-1,6-bisphosphate become carbons of DHAP while the last three carbons of fructose-1,6-bisphosphate will become carbons of GAP. It simply means that GAP will acquire the last carbon of fructose-1,6-bisphosphate which is labeled. Now the last carbon of GAP which has phosphate will be labeled.
<u>(2) Pay-off phase</u>
During this phase, GAP is dehydrogenated into 1,3-bisphosphoglycerate (BPG) with the help of enzyme glyceraldehyde 3-phosphate dehydrogenase. This oxidation is coupled to phosphorylation of C1 of GAP and this is the reason why 1,3-bisphosphoglycerate has phosphates at 2 positions i.e. at position 1 in which phosphate is newly added and position 3rd which already had labeled carbon.
It is pertinent to mention here that<u> BPG has a mixed anhydride and the bond at C1 is a very high energy bond.</u> In the next step, this high energy bond is hydrolyzed into a carboxylic acid with the help of enzyme phosphoglycerate kinase and the final product is 3-phosphoglycerate. Hence, the carbon with low energy phosphate i.e. the carbon at 3rd position remains labeled.
Answer: 8.830418848725065
Explanation:
8.830418848725065
Answer:
3. be
Explanation:
it shows it in the word search
The answer is C, hydrogen gas. This is because in single replacement reactions, the single element (here Magnesium) replaces whichever element in the compound it corresponds to. Because Mg loses electrons since it’s a metal, it will replace the element which also loses electrons, which is Hydrogen here. So when they switch places, MgCl2 and H2 are made— and H2 is the hydrogen gas.
Answer: 323.61 g of will be produced
Explanation:
The given balanced chemical reaction is :
According to stoichiometry :
2 moles of require 1 mole of
Thus 3.00 moles of will require= of
Thus is the limiting reagent as it limits the formation of product.
As 2 moles of give = 2 moles of
Thus 3.00 moles of give = of
Mass of
Thus 323.61 g of will be produced from the given moles of both reactants.