Answer:
The answer is below
Explanation:
a) The initial velocity (u) = 24 m/s
We can solve this problem using the formula:
v² = u² - 2gh
where v = final velocity, g= acceleration due to gravity = 9.8 m/s², h = height.
At maximum height, the final velocity = 0 m/s
v² = u² - 2gh
0² = 24² - 2(9.8)h
2(9.8)h = 24²
2(9.8)h = 576
19.6h = 576
h = 29.4 m
b) The time taken to reach the maximum height is given as:
v = u - gt
0 = 24 - 9.8t
9.8t = 24
t = 2.45 s
The total time needed for the apple to return to its original position = 2t = 2 * 2.45 = 4.9 s
According to newton's law Force = mass * acceleration
so , 100 = 50 * a
so , a= 2 m/s^2
The hotter star will be 16 times more luminous - luminosity depends on two things - the size of the star and the temperature of the star. The hotter a star is, the more energy it will give out. This will give rise to greater luminosity.
Answer:
D.
Explanation:
Given that your boat departs from the bank of a river that has a swift current parallel to its banks. If you want to cross this river in the shortest amount of time, you should direct your boat: so that it drifts with the current.
If the boat moves perpendicular to the current, the current flow will be the resistance to the movement of the boat. So, it's better for the boat to drifts perpendicularly with the current.
The best answer is therefore option D.