Answer:
heat pressure, electron degeneracy, neutron degeneracy, and nothing
Explanation:
Main Sequence Star: It is a star in which nuclear fusion is happening in the core of the star. Hydrogen molecules fuse together to generate Helium. This nuclear fusion generates outward gas pressure and radiation pressure which balances the inward gravity thus creating an equilibrium which keeps the stars in shape.
White dwarf: It is the end stage of a medium sized star like the Sun. Outer layers of the star are thrown in the form a shell/bubble leaving a small and dense core in the center called as white dwarf. This core consists of carbon and oxygen. Nuclear fusion doesn't occur in the core of white dwarfs. The inward gravity is balanced by the electron degeneracy pressure. Thus these stars will keep on radiating the remaining heat and will turn in to a black dwarf at the end.
Neutron Star: This is the end stage of a supermassive star (1-3 times the mass of the Sun). At the last stage of the life the core collapses. In these stars the inward gravity is so huge that the pressure overcomes the electron degeneracy pressure and crushes together the electron and proton to form neutron. The neutron then stops the collapse and balances the inward gravity.
Black Hole: This is the end stage of a hyper massive stars weighing more than 3 times the mass of the Sun. The inward gravitational force is so huge that even the neutrons are not able to stop the collapse the core. thus the mass of the star collapses into a very small area of immense gravity. There is nothing that can balance this inward gravity.
Gravity is a force because it pulls down on objects.
If you were given distance & period of time, you would be able to calculate the speed.
Hope this helps!
Explanation:
Show that the motion of a mass attached to the end of a spring is SHM
Consider a mass "m" attached to the end of an elastic spring. The other end of the spring is fixed
at the a firm support as shown in figure "a". The whole system is placed on a smooth horizontal surface.
If we displace the mass 'm' from its mean position 'O' to point "a" by applying an external force, it is displaced by '+x' to its right, there will be elastic restring force on the mass equal to F in the left side which is applied by the spring.
According to "Hook's Law
F = - Kx ---- (1)
Negative sign indicates that the elastic restoring force is opposite to the displacement.
Where K= Spring Constant
If we release mass 'm' at point 'a', it moves forward to ' O'. At point ' O' it will not stop but moves forward towards point "b" due to inertia and covers the same displacement -x. At point 'b' once again elastic restoring force 'F' acts upon it but now in the right side. In this way it continues its motion
from a to b and then b to a.
According to Newton's 2nd law of motion, force 'F' produces acceleration 'a' in the body which is given by
F = ma ---- (2)
Comparing equation (1) & (2)
ma = -kx
Here k/m is constant term, therefore ,
a = - (Constant)x
or
a a -x
This relation indicates that the acceleration of body attached to the end elastic spring is directly proportional to its displacement. Therefore its motion is Simple Harmonic Motion.