It’s c a producer a someone who produces a product so a farmer who raise corn, produces corn
The basics would be that you'd need to find out if they could exchange genetic information. If not, they couldn't be considered part of one species. Set-up 2 artificial environments so both groups would produce pollen at the same time. Fertilise both plants with the other's pollen. Then fertilise the plants with pollen from their own group.
Count the number of offspring each plant produces.
If the plants which were fertilised by the opposite group produce offspring, they are of the same species. You can then take this further if they are of the same species by analysing if there is any difference between the number (and health) of offspring produced by the crossed progeny and by the pure progeny. You'd have to take into account that some of them would want to grow at different times, so a study of the progeny from their first sprout until death (whilst emulating the seasons in your ideal controlled environment). Their success could then be compared to that of the pure-bred individuals.
Make sure to repeat this a few times, or have a number of plants to make sure your results are accurate.
Or if you couldn't do the controlled environment thing, just keep some pollen one year and use it to fertilise the other group.
I'd also put a hypothesis in there somewhere too.
The independent variable would be the number of plants pollinated. The dependant variable would be the number of progeny (offspring) produced.
Answer:
The parents must be Tt, Tt
Explanation:
Based on these results, we can conclude that each of the parents will have one dominant (T) and one recessive allele (t). We can prove this by drawing the Punnett square:
T t
T TT Tt
t Tt tt
We can see that the offspring will have the Tt genotype in two cases, the TT genotype in one case, and the tt genotype in one case, as well. Now we need to do some basic math. Two out of four is 50% (Tt - 50%), and one out of four is 25% (TT - 25%, tt - 25%).
This means that the parents must be Tt, Tt.
Answer:
Yes
Explanation:
Mycorrhizal network. Mycorrhizal networks (also known as common mycorrhizal networks or CMN) are underground hyphal networks created by mycorrhizal fungi that connect individual plants together and transfer water, carbon, nitrogen, and other nutrients and minerals.