- La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
- La longitud de onda de las ondas sonoras es 1,470 metros.
1) Inicialmente, debemos determinar la velocidad de las ondas sonoras a través del agua (), en metros por segundo:
(1)
Donde:
- - Módulo de compresibilidad, en newtons por metro cuadrado.
- - Densidad del agua, en kilogramos por metro cúbico.
Si sabemos que y , entonces la velocidad de las ondas sonoras es:
La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
2) Luego, determinamos la longitud de onda (), en metros, mediante la siguiente fórmula:
(2)
Donde es la frecuencia de las ondas sonoras, en hertz.
Si sabemos que y , entonces la longitud de onda de las ondas sonoras es:
La longitud de onda de las ondas sonoras es 1,470 metros.
Para aprender más sobre las ondas sonoras, invitamos a ver esta pregunta verificada: brainly.com/question/1070238
Answer:
<em>Infrared telescope and camera</em>
<em></em>
Explanation:
An infrared telescope uses infrared light to detect celestial bodies. The infrared radiation is one of the known forms of electromagnetic radiation. Infrared radiation is given off by a body possessing some form of heat. All bodies above the absolute zero temperature in the universe radiates some form of heat, which can then be detected by an infrared telescope, and infrared radiation can be used to study or look into a system that is void of detectable visible light.
Stars are celestial bodies that are constantly radiating heat. In order to see a clearer picture of the these bodies, <em>Infrared images is better used, since they are able to penetrate the surrounding clouds of dust,</em> and have located many more stellar components than any other types of telescope, especially in dusty regions of star clusters like the Trapezium cluster.
Answer:
112.36 pounds
Explanation:
Since 1 pound = 4.45 Newtons, a 500N child in pounds = 500÷4.45 = 112.36 pounds (approximately).
Answer:
(I). The angular acceleration and number of revolution are -2.5 rad/s² and 500 rad.
(II). The torque is 84.87 N-m.
Explanation:
Given that,
Initial spinning = 50.0 rad/s
Time = 20.0
Distance = 2.5 m
Mass of pole = 4 kg
Angle = 60°
We need to calculate the angular acceleration
Using formula of angular velocity
The angular acceleration is -2.5 rad/s²
We need to calculate the number of revolution
Using angular equation of motion
Put the value into the formula
The number of revolution is 500 rad.
(II). We need to calculate the torque
Using formula of torque
Put the value into the formula
Hence, (I). The angular acceleration and number of revolution are -2.5 rad/s² and 500 rad.
(II). The torque is 84.87 N-m.