Answer:
Force constant will be 1195.85 N/m
Work done will be 1.6859 J
Explanation:
We have given the force, F = 63.5 N
Spring is stretched by 5.31 cm
So x = 0.0531 m
Force is given , F = 63.5 N
We know that force is given by
So
k = 1195.85 N/m
Now we have to find the work done
We know that work done is given by
Answer:
aw why? are you deleting the app for school?
Answer:
2,25 g/cm3
Explanation:
Hi, you have to know one thing for this.. Density = mass/Volume,
When you have the loaf of bread with 3100 cm3 and a density of 0.90 g/cm3, the mass of that bread is 2790 g because of if you isolate the variable mass from the equation you get.. mass= density x volume
Later, have on account the mass never changes, so you crush the bread and the mass is the same.. so when you have the mashed bread.. you know that the mass is 2790 g and the volume of the bag is 1240 cm3, so you apply the main equation.... density=2790 g / 1240 cm3 , so density = 2,25 g/cm3
A) change in ht after 180m = 180 * sin(4-deg.) = 12.56m
net work done by gravity on the cyclist = mass * gravity * height diff.
= 85 * 9.8 * 12.56
= 10470J
= 10.5kJ
B) Kinetic energy = 1/2 * mass * vel.^2 = work done by gravity = 10470J
vel.^2 = 10470 * 2 / 85 = 246.4
vel. = 15.7m/s
Answer:
The vector form is as shown in the attachment
Explanation:
The figure as shown in the diagram, indicates that the car is moving along the road at a constant speed. Centripetal acceleration comes into play for an object moving in a circular motion at uniform speed. The centripetal acceleration is the acceleration experienced by an object while in uniform circular motion.
Mathematically from centripetal acceleration; a = v2/r
The equation shows that there is an inverse relationship between the acceleration and the radius of curvature as such the radius of curvature at the point A will be more than the radius of curvature at the point C, this shows that the centripetal acceleration at point C will be more than the centripetal acceleration at point A.
The attachment shows the figure and the representation in vectorial form.