Answer: Option (b) is the correct answer.
Explanation:
The given data is as follows.
mass = 0.508 g, Volume = 0.175 L
Temperature = (25 + 273) K = 298 K, P = 1 atm
As per the ideal gas law, PV = nRT.
where, n = no. of moles =
Hence, putting all the given values into the ideal gas equation as follows.
PV =
1 atm \times 0.175 L =
= 71.02 g
As the molar mass of a chlorine atom is 35.4 g/mol and it exists as a gas. So, molar mass of is 70.8 g/mol or 71 g/mol (approx).
Thus, we can conclude that the gas is most likely chlorine.
Answer:c the correct technology cannot support this mission
Explanation:
Density is a physical property. It's measured and doesn't change the object chemically.
The answer is: [B]: "ionic salt" .
___________________________________________________
Note: There is no "sharing of electrons" among the elements in this compound; so this compound in NOT a "covalent molecule".
However, there is ionic bonding: Cu²⁺ and Cl⁻ ; to form: "CuCl₂" .
____________________________________________________
In general, we have this rate law express.:
we need to find x and y
ignore the given overall chemical reaction equation as we only preduct rate law from mechanism (not given to us).
then we go to compare two experiments in which only one concentration is changed
compare experiments 1 and 4 to find the effect of changing [B]
divide the larger [B] (experiment 4) by the smaller [B] (experiment 1) and call it Δ[B]
Δ[B]= 0.3 / 0.1 = 3
now divide experiment 4 by experient 1 for the given reaction rates, calling it ΔRate:
ΔRate = 1.7 × 10⁻⁵ / 5.5 × 10⁻⁶ = 34/11 = 3.090909...
solve for y in the equation
To this point,
do the same to find x.
choose two experiments in which only the concentration of B is unchanged:
Dividing experiment 3 by experiment 2:
Δ[A] = 0.4 / 0.2 = 2
ΔRate = 8.8 × 10⁻⁵ / 2.2 × 10⁻⁵ = 4
solve for x for
the rate law is
Rate = k·[A]²[B]