<h2>MARK BRAINLIEST</h2>
For this assignment, you will develop several models that show how light waves and mechanical waves are reflected, absorbed, or transmitted through various materials. For each model, you will write a brief description of the interaction between the wave and the material. You will also compose two <u><em>typewritten</em></u> paragraphs. The first will compare and contrast light waves interacting with different materials. The second will explain why materials with certain properties are well suited for particular functions.
<h2><u>Background Information</u></h2>
A wave is any disturbance that carries energy from one place to another. There are two different types of waves: mechanical and electromagnetic. A mechanical wave carries energy through matter. Energy is transferred through vibrating particles of matter. Examples of mechanical waves include ocean waves, sound waves, and seismic waves. Like a mechanical wave, an electromagnetic wave can also carry energy through matter. However, unlike a mechanical wave, an electromagnetic wave does not need particles of matter to carry energy. Examples of electromagnetic waves include microwaves, visible light, X-rays, and radiation from the Sun.
The conduction velocity of an axon is determined by myelin sheath
thickness and internode distance.
Axon are structures in the neuron which is involved in the conduction of
impulses away from the cell body. Axons which have myelin sheath conduct
impulses faster than those without it.
Axons which have thicker myelin sheath and longer internode distance will
increase the conduction velocity of an axon and vice versa.
Read more on brainly.com/question/23488967
Static equilibrium means that all forces are equal, so make this easiest you want to break F1 into it's horizontal and vertical components. As there are no other forces acting in the horizontal, we know the horizontal component of F1 is 40N. This allows the vertical component to be found using pythagorus theorem. After finding the vertical and horizontal components, you just have to add the vertical components to find the difference between the up and down.
Answer:
The Magnifying power of a telescope is
Explanation:
Radius of curvature R = 5.9 m = 590 cm
focal length of objective =
⇒ =
⇒ = 295 cm
Focal length of eyepiece = 2.7 cm
Magnifying power of a telescope is given by,
therefore the Magnifying power of a telescope is