Answer:
= 67.79 g
Explanation:
The equation for the reaction is;
4Cr(s)+3O2(g)→2Cr2O3(s)
The mass of O2 is 21.4 g, therefore, we find the number of moles of O2;
moles O2 = 21.4 g / 32 g/mol
=0.669 moles
Using mole ratio, we get the moles of Cr2O3;
moles Cr2O3 = 0.669 x 2/3
=0.446 moles
but molar mass of Cr2O3 is 151.99 g/mol
Hence,
The mass Cr2O3 = 0.446 mol x 151.99 g/mol
<u> = 67.79 g
</u>
Answer: 1.46moles
Explanation:
Applying PV= nRT
P= 1atm, V= 32.6L, R= 0.082, T = 273K
Substitute and simplify
1×32.6/(0.082×273)=n
n= 1.46moles
Answer:
The correct answer is: pH= 4.70
Explanation:
We use the <em>Henderson-Hasselbach equation</em> in order to calculate the pH of a buffer solution:
Given:
pKa= 4.90
[conjugate base]= 4.75 mol
[acid]= 7.50 mol
We calculate pH as follows:
pH = 4.90 + log (4.75 mol/7.50 mol) = 4.90 + (-0.20) = 4.70
CH4 + 2O2 = CO2 + 2H2O
According to molar weights :
16 gm CH4 + 64 gm O2 = 44 gm CO2 + 36 gm H2O
Since 16 gm CH4 produce 36 gm H2O
Hence 2.5 gmCH4 produce 36×2.5/16 gm H2O
= 5.265 gm of H2O
2.1K viewsView 2 Upvoters
2
1
Related Questions (More Answers Below)