Centre of Mass then axis of rotation and then moment of inertia. This was the toughest question for your level... happy to help ^_^. It was purely experimental question.
☯ <u>Using 1st equation of motion </u>
☯ <u>Now, Finding the force exerted </u>
☯ <u>Hence</u>,
Answer:
Carla
Explination: As Daniel's ball is dropped from the car moving at 40 mph in a horizontal direction, at the time the ball is dropped it is also moving at 40 mph in a horizontal direction due to inertia, a property of mass causing resistance to change, Daniel's ball will continue to move in a horizontal direction even after being dropped along with falling due to gravity. Daniel's ball will then fall in a projectile motion curve of sorts which will cause an overall velocity to not be straight down causing it not to fall to the ground as quickly as Carla's ball.
Sorry for the long explanation
Use a=(dv/dt) (change in velocity/ change in time)=acceleration
(1.2/5)=acceleration
F=ma (Newton's second law, Force= Mass x Acceleration
=960 x 0.24 F=230.4N If T<230.4N then the tow rope will hold
I believe it is
1.6x=2.7(x-1.8)
1.1x=2.7*1.8
x~4.4
4.4*1.6
~7.1m