The time the package travels horizontally is equal to the time it takes to hit the ground. This can be calculated using:
s = ut + 1/2 at²; u is 0
480 = 4.9t²
t = 9.90 seconds
Horizontal distance = horizontal speed x time
The speed will be converted to m/s from km/h
= 180 km/hr x 1000m/km x 1hr/3600 seconds x 9.90 seconds
= 495 m
D
Because the rest of the answers are illogical
india and china produce the most greenhouse gas emissions?
Answer:
33 g.
Explanation:
Assuming no heat transfer can be possible except for heat exchange between water and steel, we can say that the heat lost by the knife, must be equal to the heat gained by the water.
As we have a limit for the maximum temperature of both elements (once reached a final thermal equilibrium), of 100ºC, which means that the maximum allowable change in temperature will be of 300º C for the knife, and of 80º C for the water.
Empirically , it has been showed that for a heat exchange process using only conduction, the heat needed to raise the temperature of a body, is proportional to the mass, being the proportionality constant a factor that depends on the material, called specific heat.
So, we can write the following equation:
cs*mk*Δtk = cw*mw*Δtw
Replacing by the givens of the question, we have:
0.11 cal/gºC * 80 g * 300ºC = 1 cal/gºC*mw*80ºC
Solving for mw = 2,640 cal / 80 cal/g =33 g.
Answer:
(a) 43.2 kC
(b) 0.012V kWh
(c) 0.108V cents
Explanation:
<u>Given:</u>
- i = current flow = 3 A
- t = time interval for which the current flow =
- V = terminal voltage of the battery
- R = rate of energy = 9 cents/kWh
<u>Assume:</u>
- Q = charge transported as a result of charging
- E = energy expended
- C = cost of charging
Part (a):
We know that the charge flow rate is the electric current flow through a wire.
Hence, 43.2 kC of charge is transported as a result of charging.
Part (b):
We know the electrical energy dissipated due to current flow across a voltage drop for a time interval is given by:
Hence, 0.012V kWh is expended in charging the battery.
Part (c):
We know that the energy cost is equal to the product of energy expended and the rate of energy.
Hence, 0.108V cents is the charging cost of the battery.