Answer:
0.098 moles
Explanation:
Let y represent the number of moles present
1 mole of Ba(OH)₂ contains 2 moles of OH- ions.
Hence, 0.049 moles of Ba(OH)2 contains y moles of OH- ions.
To get the y moles, we then do cross multiplication
1 mole * y mole = 2 moles * 0.049 mole
y mole = 2 * 0.049 / 1
y mole = 0.098 moles of OH- ions.
1 mole of OH- can neutralize 1 mole of H+
Therefore, 0.098 moles of HNO₃ are present.
A molecular size affects the rate of evaporation when the larger the intermolecular forces in a compound, the slower the evaporation rate and this correlates with temperature change.
Molecular size seems to have an effect on evaporation rates in that the larger a molecule gets or grows from a base chemical formula, its evaporation rate will get slower.
<h3>What is the molecular size?</h3>
This is a measure of the area a molecule occupies in three-dimensional space as this relates to the physical size of an individual molecule.
Hence, we can see that a molecular size affects the rate of evaporation the larger the forces, the lower the rate.
Read more about<em> molecular size</em> here:
brainly.com/question/16616599
#SPJ1
hello!
your answer will be
The origin of the matter does not usually fall into chemistry
have a goed day
Answer:
H2CO3 represents carbonic acid