Answer:
a. the maximum number of σ bonds that the atom can form is 4
b. the maximum number of p-p bonds that the atom can form is 2
Explanation:
Hybridization is the mixing of at least two nonequivalent orbitals, in this case, we have the mixing of one <em>s, 3 p </em> and <em> 2 d </em> orbitals. In hybridization the number of hybrid orbitals generated is equal to the number of pure atomic orbital, so we have 6 hybrid orbital.
The shape of this hybrid orbital is octahedral (look the attached image) , it has 4 orbital located in the plane and 2 orbital perpendicular to it.
This shape allows the formation of maximum 4 σ bond, because σ bonds are formed by orbitals overlapping end to end.
And maximum 2 p-p bonds, because p-p bonds are formed by sideways overlapping orbitals. The atom can form one with each one of the orbitals located perpendicular to the plane.
Answer:
2 sig figs.
Explanation:
Sig Fig Rules:
Any non-zero digit is a significant figure.
Any zeros between 2 non-zero digits are significant figures.
Trailing zeros after the decimal are significant figures.
<u>Answer:</u>
<u>For a:</u> The equilibrium mixture contains primarily reactants.
<u>For b:</u> The equilibrium mixture contains primarily products.
<u>Explanation:</u>
There are 3 conditions:
- When ; the reaction is product favored.
- When ; the reaction is reactant favored.
- When ; the reaction is in equilibrium.
For the given chemical reactions:
The chemical equation follows:
The expression of for above reaction follows:
As, , the reaction will be favored on the reactant side.
Hence, the equilibrium mixture contains primarily reactants.
The chemical equation follows:
The expression of for above reaction follows:
As, , the reaction will be favored on the product side.
Hence, the equilibrium mixture contains primarily products.