Answer: Contact force
a. Applying break in a vehicle.
d. The speed of ball rolling on ground is reduced
Non contact force
b. A coconut falling from a coconut tree.
c. The planets revolving around the sun.
Explanation:
The contact force is the force which exerts when one object or entity comes in contact with other object or entity. For example, on application of break the vehicle stops, the force is applied on the breaks to stop the vehicle. The ball rolling on the ground the speed reduces so the application of force on the ground also reduces.
The non contact force is the force one object exerts on the other without coming in direct contact with the other object. The force exerted by one object on other due to gravity is a non contact force. The coconut falling on the ground and planets revolving around the sun are examples of non contact force due to gravity.
Answer:
A(3.56m)
Explanation:
We have a conservation of energy problem here as well. Potential energy is being converted into linear kinetic energy and rotational kinetic energy.
We are given ω= 4.27rad/s, so v = ωr, which is 6.832 m/s. Place your coordinate system at top of the hill so E initial is 0.
Ef= Ug+Klin+Krot= -mgh+1/2mv^2+1/2Iω^2
Since it is a solid uniform disk I= 1/2MR^2, so Krot will be 1/4Mv^2(r^2ω^2= v^2).
Ef= -mgh+3/4mv^2
Since Ef=Ei=0
Mgh=3/4mv^2
gh=3/4v^2
h=0.75v^2/g
plug in givens to get h= 3.57m
Answer:
Written in Python
def energyvector(mass):
c = 2.9979 * 10**8
energy = mass * c ** 2
print(round(energy,2))
Explanation:
This line defines the function
def energyvector(mass):
This line initializes the speed of light
c = 2.9979 * 10**8
This line calculates the corresponding energy
energy = mass * c ** 2
This line prints the calculated energy
print(round(energy,2))