Well, its in the air, so the air is "upon" the ball. and when it comes down...you catch it, and throw it, and get someone out, and win the game, and just keep doing that, and boooommm you're and pro baseball player. Life is good
Answer:
Explanation:
radius of the solenoid, r = 0.05 m
length of the solenoid, l = 0.39 m
Magnetic field of the solenoid, B = 2 x 10^-5 T
Number of turns, N = 200
The magnetic field of the solenoid is given by
where, i be the current and n be the number of turns per unit length
n = N / l = 200 / 0.39 = 512.8
i = 0.031 A
The electrostatic force between the two ions is
Explanation:
The electrostatic force between two charged particle is given by Coulomb's law:
where
is the Coulomb's constant
are the two charges
r is the separation between the two charges
In this problem, the ion of sodium has a charge of
while the ion of chlorine has a charge of
And the distance between the two ions is
Substituting, we find the electrostatic force between the two ions:
where the negative sign simply means that the force is attractive, since the two ions have opposite charge.
Learn more about electrostatic force:
brainly.com/question/8960054
brainly.com/question/4273177
#LearnwithBrainly
Answer:
i dont know
Explanation:
i dont know since you didn't provide something to base off of
Answer:
Its inductance L = 166 mH
Explanation:
Since a current, I = 0.698 A is obtained when a voltage , V = 5.62 V is applied, the resistance of the coil is gotten from V = IR
R = V/I = 5.62/0.698 = 8.052 Ω
Since we have a current of I' = 0.36 A (rms) when a voltage of V' = 35.1 V (rms) is applied, the impedance Z of the coil is gotten from
V₀' = I₀'Z where V₀ = maximum voltage = √2V' and I₀ = maximum current = √2I'
Z = V'/I' = √2 × 35.1 V/√2 × 0.36 V = 97.5 Ω
WE now find the reactance X of the coil from
Z² = X² + R²
X = √(Z² - R²)
= √(97.5² - 8.05²)
= √(9506.25 - 64.8025)
= √9441.4475
= 97.17 Ω
Now, the reactance X = 2πfL where f = frequency of generator = 93.1 Hz and L = inductance of coil.
L = X/2πf
= 97.17/2π(93.1 Hz)
= 97.17 Ω/584.965 rad/s
= 0.166 H
= 166 mH
Its inductance L = 166 mH