Answer:
the average answer in maybe 60
Deshielding due to an electronegative element close by is the common reason for observing increased chemical shift of a c-h proton
<h3>
What is a chemical shift? </h3>
The resonance frequency of a proton in relation to a standard compound is represented by chemical shift. Chemical shift, which is measured in ppm and is represented by the sign (δ), (parts per million).The chemical shift in a proton NMR spectrum provides details about the targeted proton's chemical surroundings. The structure of the investigated substance, especially electronegative components or effects, has a significant impact on the chemical shift value. Electronegative elements' ability to remove electron density from the proton, which raises the chemical shift value, is one explanation for this. The proton is more exposed to the magnetic field that is being applied externally as a result of this process, which is referred to as de-shielding.
To learn more about limbic system visit:
brainly.com/question/14788457
#SPJ4
Answer chocies .......................
Answer: A) Storing experimental samples
Explanation:
It is a common piece of laboratory glassware that can be made of glass or plastic and is opened at the top and closed at the bottom.
It cannot be used for measurements because there is no graduation indicating the volume.
Althought it can contain extra chemicals left over from an experiment, it is not the main proposal of the glassware that is to store samples.
It cannot be used in a microscope and the object for that is a microscope slide.
Answer:
339kJ
Explanation:
Given parameters:
Mass of steam = 150g = 0.15kg
Initial temperature of steam = 100°C
Final temperature of water = 100°C
Unknown:
Quantity of heat that must be removed to condense the steam = ?
Solution:
The heat involved here is a latent heat because there is no change temperature. The process is just a phase change.
H = mL
m is the mass
L is the latent heat of vaporization = 2,260 kJ/kg
Insert the parameters and solve;
H = 0.15kg x 2,260 kJ/kg
H = 339kJ