Answer:
Velocity remains the same at 104 m/s
Explanation:
According to Newton's 1st law of motion, an object subjected to no force or net force equal 0 would maintain its velocity. In our case the crew shuts off the power, spaceship is in space and far from all other objects (so no gravity whatsoever) would have no force acting on it. Therefore its velocity would stay the same at 104 m/s
inertia is the answer!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Yes it is! It would be SWE vs. DEN
During a climb UP the mountain, gravity does NO work on the climber.
Actually, it's more correct to say that gravity does NEGATIVE work
on him. The climber has to DO the positive work to haul himself up.
Work = (mass) x (gravity) x (height) .
For the guy in this problem:
Work = (67 kg) x (9.8 m/s²) x (3,500 meters)
= 2,298,100 joules.
If he eats no candy bars on the way, and completely depends on
his stored body fat for the energy, then he'll burn off
(2,298,100 joules) / (3.8 x 10⁷ joules/kg)
= 0.06 kg of fat.
That's only about 2.1 ounces. We KNOW he'll lose more weight than that,
climbing 11,000 feet. That's because climbing is pretty inefficient.
In addition to the potential energy you have to give your body weight,
you also have to expend energy breathing, digesting, metabolizing,
and sweating.