<span>The half-life of Carbon 14 and radionuclides are used to estimate the absolute (versus relative) age of pre-history items </span>
Answer:
magnesium + hydrochloric acid → hydrogen gas + magnesium chloride
explanation:
the nitrogen in HNO3 is in the +5 oxidation state and is easily reduced. The reduction would result in the oxidation of the hydrogen gas, forming the water once again.The sulfur in H2SO4 is also in its highest oxidation state, +6.
<em>Hope</em><em> this</em><em> helps</em><em> </em><em>:</em><em>)</em>
Answer:
0.26g of NaCl is the maximum mass that could be produced
Explanation:
Based on the reaction:
HCl + NaOH → NaCl + H₂O
<em>Where 1 mol of HCl reacts per mol of NaOH to produce 1 mol of NaCl</em>
<em />
To solve this question we need to find <em>limiting reactant. </em>The moles of limiting reactant = Moles of NaCl produced:
<em>Moles HCl -Molar mass: 36.46g/mol-:</em>
0.365g HCl * (1mol / 36.46g) = 0.010 moles HCl
<em>Moles NaOH -Molar mass: 40g/mol-:</em>
0.18g NaOH * (1mol / 40g) = 0.0045 moles NaOH
As the reaction is 1:1 and moles NaOH < moles HCl, limiting reactant is NaOH and maximum moles produced of NaCl are 0.0045 moles.
The mass of NaCl is:
<em>Mass NaCl -Molar mass: 58.44g/mol-:</em>
0.0045 moles * (58.44g/mol) =
<h3>0.26g of NaCl is the maximum mass that could be produced</h3>
Answer:
The answer is
<h2>2 cm/year</h2>
Explanation:
To find the rate in cm/year we must first convert 200 m into cm
1 m = 100 cm
if 1 m = 100 cm
Then 200 m = 200 × 100 = 20 ,000 cm
So the rate is
<h2>
</h2>
<u>Reduce the fraction with 10,000</u>
We have the final answer as
<h3>2 cm/year</h3>
Hope this helps you