Answer:
Heat energy required (Q) = 10.736 KJ
Explanation:
Given:
Specific heat of ethanol (C) = 2.44 J/g °C
Mass of ethanol (M) = 50 gram
Initial temperature (T1) = -20°C
Final temperature (T1) = 68°C
Find:
Heat energy required (Q) = ?
Computation:
Change in temperature (ΔT) = 68°C - (-20°C)
Change in temperature (ΔT) = 88°C
Heat energy required (Q) = mC(ΔT)
Heat energy required (Q) = (50)(2.44)(88)
Heat energy required (Q) = 10,736 J
Heat energy required (Q) = 10.736 KJ
Answer:
c The concentration(s) of reactant(s) is constant over time.
Step-by-step explanation:
When the reaction A ⇌ B reaches equilibrium, the concentrations of reactants and products are constant over time.
a is <em>wrong</em>, because the concentrations of reactants and products are usually quite different.
b is <em>wrong</em>, because both product and reactant molecules are being formed at equilibrium.
d is <em>wrong</em>. The rates of the forward and reverse reactions are equal, but they are not zero.
Omg i lost everything ugh
To do it again
1. 12g+2(16g)= 44g/mol
25.01/ 44g/mol= .... mol
2. 14g+3(1g)= 17g/mol
34.05g/ 17g/mol=.... mol
3. 23g+1g+ 12g+ 3(16g)= 84g/mol
17.31g/ 84g/mol=.... mol
4. 6(12g)+12(1g)+6(16g)= 180g/mol
123.44g/ 180g/mol=.... mol
5. 23g+16g+1g= 40g/mol
2.2mol x 40g/mol= .... g
6. 2(35g)= 71g/mol
4.5mol x 71g/mol= .... g
7. 137g+ 2(14g)+ 6(16g)= 261g/mol
0.002mol x 261g/mol= ....g
8. 2(56g)+ 3(32g)+ 12(16g)= 400g/mol
5.4mol x 400g/mol=.... g
I cant believe i had to do this all over