The resulting change in momentum of the system will be +18.6 Ns. The momentum is conserved.
<h3>What is the law of conservation of momentum?</h3>
According to the law of conservation of momentum, the momentum of the body before the collision is always equal to the momentum of the body after the collision.
The given data in the problem is;
m is the mass =6.0 kg
t is the time interval=2 second
From Newton's second law;
From the graph;
The change in the momentum is;
Hence, the resulting change in momentum of the system will be +18.6 Ns.
To learn more about the law of conservation of momentum, refer;
brainly.com/question/1113396
#SPJ1
That's <em>false</em>. It's just the opposite. As you become more fit, your heart becomes able to accomplish more with each beat, so your resting heart rate DEcreases.
Answer:
Part a)
Velocity = 6.9 m/s
Part b)
Position = (3.6 m, 5.175 m)
Explanation:
Initial position of the particle is ORIGIN
also it initial speed is along +X direction given as
now the acceleration is given as
when particle reaches to its maximum x coordinate then its velocity in x direction will become zero
so we will have
Part a)
the velocity of the particle at this moment in Y direction is given as
Part b)
X coordinate of the particle at this time
Y coordinate of the particle at this time
so position is given as (3.6 m, 5.175 m)
Answer:
Incomplete question
This is the completed question
If the resistor in the circuit had a larger resistance then the current would be then have to be proportionally smaller. Because the batteries each give off 1.5 volts then the current would have to be the variable that would change. What affect would using a 12V car battery have on the operation of your circuit? (Do not try this.) What would happen to the current? What would happen to the resistor?
Explanation:
Using ohms law as our basis
Ohms law state that, the voltage in an ohmic conductor is directly proportional to the current
V∝I
Resistance is the constant of proportionality
Then
V=iR
Since we want a relationship between current and resistance.
then, I=V/R
So, current is inversely proportional to Resistance
as the current increase the resistance reduce and as the current reduces the resistance increases.
a. So, increasing the voltage from 1.5V to 12V increases the current In the circuit because voltage Is directly proportional to I.
From ohms law
V=iR
When v =1.5V
I=1.5/R
When V increase to 12V
I=12/R
I.e, it increases by a factor of 8. Eight times it's initial value
b. Now, the resistance in the circuit is the constant of proportionality and it doesn't change in a given circuit expect when using a variable resistoa r like rheostat.
Hi there!
We can begin by calculating the time the ball takes to reach the highest point of its trajectory, which can be found using the following:
Where:
tmax = (? sec)
vsinθ = vertical comp. of velocity = 10sin(48) = 7.43 m/s)
g = acceleration due to gravity (9.8 m/s²)
We can solve for this time:
When the ball is at the TOP of its trajectory, its VERTICAL velocity is equivalent to 0 m/s. Thus, we can consider this a free-fall situation.
We must begin by solving for the maximum height reached by the ball using the equation:
d = displacement (m)
vi = initial velocity (7.43 m/s)
a = acceleration due to gravity
d = displacement (m)
y0 = initial VERTICAL displacement (28m)
Plug in the values:
Now, we can use the rearranged kinematic equation:
Add the two times together: