Using a punnet square,
h h
H Hh Hh
h hh hh
The offspring will be 50% Heterozygous dominant and 50% homozygous recessive.
The gravitational potential energy of the object is 100 J.
Gravitational potential energy stored in an object is the work done in raising the object to a height <em>h</em> against the gravitational force acting on it.
The gravitational force acting on a body is its weight mg, where m is its mass and g, the acceleration due to gravity.
Work done by a force is equal to the product of the force and the displacement made by the point of application of the force.
The weight of the object is given as 20 J and it is raised to a height of 5 m.
The gravitational potential energy of the object is 100 J.
Answer:
Explanation:
We shall apply conservation of mechanical energy
kinetic energy of alpha particle is converted into electric potential energy.
1/2 mv² = k q₁q₂/d , d is closest distance
d = 2kq₁q₂ / mv²
= 2 x 9 x 10⁹ x 79e x 2e / 4mv²
= 1422 x2x (1.6 x 10⁻¹⁹)² x 10⁹ /4x 1.67 x 10⁻²⁷ x (1.5 x 10⁷)²
= 3640.32 x 10⁻²⁹ /2x 3.7575 x 10⁻¹³
= 484.4 x 10⁻¹⁶
=48.4 x 10⁻¹⁵ m
Answer:
2.06 m/s
Explanation:
From the law of conservation of linear momentum, the sum of momentum before and after collision are equal. Considering this case where we have frictionless surface, no momentum is lost in the process.
Momentum before collision
Momentum is given by p=mv where m and v represent mass. The initial sum of momentum will be 9v+(27*0.5)=9v+13.5
Momentum after collision
The momentum after collision will be given by (9+27)*0.9=32.4
Relating the two then 9v+13.5=32.4
9v=18.5
V=2.055555555555555555555555555555555555555 m/s
Rounded off, v is approximately 2.06 m/s
Answer:
Intensity,
Explanation:
Power of the light bulb, P = 40 W
Distance from screen, r = 1.7 m
Let I is the intensity of light incident on the screen. The power acting per unit area is called the intensity of the light. Its formula is given by :
So, the intensity of light is .