Answer:
d) 0.1202 M
Explanation:
Let's consider the neutralization reaction between NaOH and a generic monoprotic acid.
NaOH + HA → NaA + H₂O
The used volume of NaOH is 41.63 mL - 19.63 mL = 22.00 mL. The moles of NaOH are:
22.00 × 10⁻³ L × 0.1093 mol/L = 2.405 × 10⁻³ mol
The molar ratio of NaOH to HA is 1:1. The moles of HA that reacted are 2.405 × 10⁻³ moles.
The molar concentration of HA is:
2.405 × 10⁻³ mol / 20.00 × 10⁻³ L = 0.1202 M
Answer is: because weak acids do not dissociate completely.
The strength of an Arrhenius
acid determines percentage of ionization of acid and the number of H⁺ ions formed. <span>
Strong acids completely ionize in water and give large amount ofhydrogen ions (H</span>⁺), so we use only one arrow, because reaction goes in one direction and there no molecules of acid in solution.
For example hydrochloric acid: HCl(aq) → H⁺(aq) + Cl⁻(aq).
<span>
Weak acid partially ionize in water
and give only a few hydrogen ions (H</span>⁺), in the solution there molecules of acid and ions.
For example cyanide acid: HCN(aq) ⇄ H⁺(aq)
+ CN⁻(aq).
By adding together the number of protons and neutrons and multiplying by 1 amu, you can calculate the mass of the atom.
Answer:
16.6 g of Al are produced in the reaction of 82.4 g of AlCl₃
Explanation:
Let's see the decomposition reaction:
2AlCl₃ → 2Al + 3Cl₂
2 moles of aluminum chloride decompose to 2 moles of solid Al and 3 moles of chlorine gas.
We determine the moles of salt:
82.4 g . 1mol/ 133.34g = 0.618 moles
Ratio is 2:2. 2 moles of salt, can produce 2 moles of Al
Then, 0.618 moles of salt must produce 0.618 moles of Al.
Let's convert the moles to mass → 0.618 mol . 26.98g /mol = 16.6 g