Answer:
63. 55 amu
Explanation:
Copper is known to exist in two different isotopes which are Cu-63 and Cu-65.
Cu-63 has an atomic mass of 62.93 amu and it has an abundance of 69.15%.
Similarly,
Cu-65 has an atomic mass of 64.93 amu and it has an abundance of 30.85%
Therefore, using the weighted average mass method, the atomic mass of copper is:
Atomic mass of copper = (0.6915*62.93) amu + (0.3085*64.93) amu = 43.52 amu + 20.03 amu = 63.55 amu
Thus, the atomic mass of copper (express in two decimal places) is 63.55 amu
Answer : Right
Explanation : The direction of reaction tends to proceed on right side under standard conditions; If the change in standard free energy ΔG for a particular reaction is negative. Also if the elements in their most stable forms as they exist under standard conditions. Then ΔG determines the direction and extent of chemical change. But under standard conditions the direction of the reaction will be to right.
The percentage of CO2 increased 48 percent. Hope this helped!
mass of PbI₂ = 27.6606 g
<h3>Further explanation</h3>
Given
Pb(NO₃)₂ + NaI → PbI₂ + NaNO₃
28.0 grams of Pb(NO₃)₂ react with 18.0 grams of NaI
Required
mass of PbI₂
Solution
Balanced equation
Pb(NO₃)₂ + 2NaI → PbI₂ + 2NaNO₃
The principle of a balanced reaction is the number of atoms in the reactants = the number of atoms in the product
mol Pb(NO₃)₂ :
= 28 : 331,2 g/mol
= 0.0845
mol NaI :
= 18 : 149,89 g/mol
= 0.12
Limiting reactant : mol : coefficient
Pb(NO₃)₂ : 0.0845 : 1 = 0.0845
NaI : 0.12 : 2 = 0.06
NaI limiting reactant (smaller ratio)
mol PbI₂ based on NaI
= 1/2 x 0.12 = 0.06
Mass PbI₂ :
= 0.06 x 461,01 g/mol
= 27.6606 g