Answer:
what's the matter? im an ally... and fully support the lgbtq+ so i might have some advice?
Explanation:
Answer:
final pressure ( P2) = 467.37 mm Hg
Explanation:
ideal gas:
∴ P1 = 570 mm Hg * ( atm / 760 mm Hg ) = 0.75 atm
∴ T1 = 25 ° C = 298 K
∴ V1 = 1.250 L
∴ R = 0.082 atm L / K mol
⇒ n = P1*V1 / R*T1
⇒ n = (( 0.75 ) * ( 1.25 )) / (( 0.082 ) * ( 298 ))
⇒ n = 0.038 mol gas
∴ T2 = 175 °C ( 448 K )
∴ V2 = 2.270 L
⇒ P2 = nRT2 / V2
⇒ P2 = (( 0.038 ) * ( 0.082 ) * ( 448 )) / 2.270
⇒ P2 = 0.615 atm * ( 760 mm Hg / atm ) = 467.37 mm Hg
Answer:
There is a relationship between the strength of an acid (or base) and the strength of its conjugate base (or conjugate acid): The stronger the acid, the weaker its conjugate base. The weaker the acid, the stronger its conjugate base. The stronger the base, the weaker its conjugate acid.
explanation
The strength of an acid and a base is determined by how completely they dissociate in water. Strong acids (like stomach acid) break down or dissociate in water. Weak acids maintains their protons in water.
Answer:
9.1 mol
Explanation:
The balanced chemical equation of the reaction is:
CO (g) + 2H2 (g) → CH3OH (l)
According to the above balanced equation, 2 moles of hydrogen gas (H2) are needed to produce 1 mole of methanol (CH3OH).
To convert 36.7 g of hydrogen gas to moles, we use the formula;
mole = mass/molar mass
Molar mass of H2 = 2.02g/mol
mole = 36.7/2.02
mole = 18.17mol
This means that if;
2 moles of H2 reacts to produce 1 mole of CH3OH
18.17mol of H2 will react to produce;
18.17 × 1 / 2
= 18.17/2
= 9.085
Approximately to 1 d.p = 9.1 mol of methanol (CH3OH).
<h2>
Answer:</h2>
Valance electrons can be determined by <u>Group</u> on the periodic table
<h2>
Explanation:</h2>
- Valence electrons are the electrons present in the outermost shell of an atom. We can determine the total number of valence electrons present in an atom by checking at its Group in which it is placed in the periodic table. For example, atoms in Groups 1 the number of valence electron is one and for group 2 the number of valence electrons is 2.
- The groups have number of valance electrons as follow:
Group 1 - 1 valence electron.
Group 2 - 2 valance electrons.
Group 13 - 3 valence electrons.
Group 14 - 4 valance electrons.
Group 15 - 5 valence electrons.
Group 16 - 6 valence electrons.
Group 17 - 7 valence electrons.
Group 18 - 8 valence electrons.
Result: No of valence electron can be determined by the group no. of the element.